Integral Transform of p-k Mittag-Leffler Function

K.S. Gehlot, Chena Ram, Anita
Department of Mathematics and Statistics, JNV University Jodhpur, Rajasthan, India-306401.
Email: drksgehlot@rediffmail.com

Abstract: In this paper, we evaluate Mellin-Barnes integral representation of p-k Mittag-Leffler Function with their several special cases. The relationship of p-k Mittag-Leffler Function with Fox H-Function and Wright hypergeometric function is also establish.
In last we obtained its Euler transform, Laplace Transform, Mellin transform and several special cases.
MSC(2011): 33E12, 44Axx
Keywords: The p-k Mittag-Leffler Function, Generalized k-Mittag-Leffler Function, Two parameter pochhammer symbol, Two parameter Gamma function, Wright hypergeometric function, Fox H-function, Euler transform, Laplace transform and Mellin transform.

1 Introduction

The two parameter pochhammer symbol is recently introduce by [6](equation 2.1), in the form,

1.1 Definition

Let $x \in C ; k, p \in R^{+}-\{0\}$ and $\operatorname{Re}(x)>0, n \in N$, the p-k Pochhammer Symbol (i.e. Two Parameter Pochhammer Symbol), ${ }_{p}(x)_{n, k}$ is given by

$$
\begin{equation*}
{ }_{p}(x)_{n, k}=\left(\frac{x p}{k}\right)\left(\frac{x p}{k}+p\right)\left(\frac{x p}{k}+2 p\right) \ldots \ldots \ldots\left(\frac{x p}{k}+(n-1) p\right) . \tag{1}
\end{equation*}
$$

And the Two Parameter Gamma Function is given by [6](equation 2.6, 2.7 and 2.14),

1.2 Definition

For $x \in C / k Z^{-} ; k, p \in R^{+}-\{0\}$ and $\operatorname{Re}(x)>0, n \in N$, the $\mathrm{p}-\mathrm{k}$ Gamma Function (i.e. Two Parameter Gamma Function), ${ }_{p} \Gamma_{k}(x)$ as,

$$
\begin{equation*}
{ }_{p} \Gamma_{k}(x)=\frac{1}{k} \lim _{n \rightarrow \infty} \frac{n!p^{n+1}(n p)^{\frac{x}{k}}}{{ }_{p}(x)_{n+1, k}} . \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
{ }_{p} \Gamma_{k}(x)=\frac{1}{k} \lim _{n \rightarrow \infty} \frac{n!p^{n+1}(n p)^{\frac{x}{k}-1}}{p_{p}(x)_{n, k}} \tag{3}
\end{equation*}
$$

The integral representation of $\mathrm{p}-\mathrm{k}$ Gamma Function is given by,

$$
\begin{equation*}
{ }_{p} \Gamma_{k}(x)=\int_{0}^{\infty} e^{-\frac{t^{k}}{p}} t^{x-1} d t \tag{4}
\end{equation*}
$$

The Beta function,

$$
\begin{equation*}
B(m . n)=\frac{\Gamma(n) \Gamma(m)}{\Gamma(m+n)}=\int_{0}^{1} t^{n-1}(1-t)^{m-1} d t ;(\operatorname{Re}(n)>0, \operatorname{Re}(m)>0) \tag{5}
\end{equation*}
$$

Let $k, p \in R^{+}-\{0\} ; \alpha, \beta, \gamma \in C / k Z^{-} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0$ and $q \in(0,1) \cup N$.
The p - k Mittag-Leffler function denoted by ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ and defined as,

$$
\begin{equation*}
{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)=\sum_{n=0}^{\infty} \frac{{ }_{p}(\gamma)_{n q, k}}{{ }_{p} \Gamma_{k}(n \alpha+\beta)} \frac{z^{n}}{n!} \tag{6}
\end{equation*}
$$

Where ${ }_{p}(\gamma)_{n q, k}$ is two parameter Pochhammer symbol given by equation (1.1) and ${ }_{p} \Gamma_{k}(x)$ is the two parameter Gamma function given by equation (1.3).

Particular cases : For some particular values of the parameters $p, q, k, \alpha, \beta, \gamma$ we can obtain certain Mittag-Leffler functions, defined earlier:
(a) For $q=1$ equation (2.1), reduces in generalized form of k- Mittag-Leffler functions defined as,

$$
\begin{equation*}
{ }_{p} E_{k, \alpha, \beta}^{\gamma, 1}(z)=\sum_{n=0}^{\infty} \frac{{ }_{p}(\gamma)_{n, k} z^{n}}{\Gamma_{k}(n \alpha+\beta)(n!)} . \tag{7}
\end{equation*}
$$

(b) For $p=k$ equation (2.1), reduces in Generalized k- Mittag-Leffler functions defined by [5],

$$
\begin{equation*}
{ }_{k} E_{k, \alpha, \beta}^{\gamma, q}(z)=\sum_{n=0}^{\infty} \frac{{ }_{k}(\gamma)_{n q, k} z^{n} \Gamma_{k}(n \alpha+\beta)(n!)}{n}=G E_{k, \alpha, \beta}^{\gamma, q}(z) \tag{8}
\end{equation*}
$$

(c) For $p=k, q=1$ equation (2.1), reduces in k - Mittag-Leffler functions defined by [3],

$$
\begin{equation*}
{ }_{k} E_{k, \alpha, \beta}^{\gamma, 1}(z)=\sum_{n=0}^{\infty} \frac{(\gamma)_{n, k} z^{n}}{\Gamma_{k}(n \alpha+\beta)(n!)}=E_{k, \alpha, \beta}^{\gamma}(z) \tag{9}
\end{equation*}
$$

(d) For $p=k$ and $k=1$ equation (2.1), reduces in Mittag-Leffler functions defined by [1],

$$
\begin{equation*}
{ }_{1} E_{1, \alpha, \beta}^{\gamma, q}(z)=\sum_{n=0}^{\infty} \frac{(\gamma)_{n q} z^{n}}{\Gamma(n \alpha+\beta)(n!)}=E_{\alpha, \beta}^{\gamma, q}(z) \tag{10}
\end{equation*}
$$

(e) For $p=k, q=1$ and $k=1$ equation (2.1), reduces in Mittag-Leffler functions defined by [8],

$$
\begin{equation*}
{ }_{1} E_{1, \alpha, \beta}^{\gamma, 1}(z)=\sum_{n=0}^{\infty} \frac{(\gamma)_{n} z^{n}}{\Gamma(n \alpha+\beta)(n!)}=E_{\alpha, \beta}^{\gamma}(z) \tag{11}
\end{equation*}
$$

(f) For $p=k, q=1, k=1$ and $\gamma=1$ equation (2.1), reduces in Mittag-Leffler functions defined by [3],

$$
\begin{equation*}
{ }_{1} E_{1, \alpha, \beta}^{1,1}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(n \alpha+\beta)}=E_{\alpha, \beta}(z) \tag{12}
\end{equation*}
$$

(g) For $p=k, q=1, k=1, \gamma=1$ and $\beta=1$ equation (2.1), reduces in Mittag-Leffler functions defined by [4],

$$
\begin{equation*}
{ }_{1} E_{1, \alpha, 1}^{1,1}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma(n \alpha+1)}=E_{\alpha}(z) \tag{13}
\end{equation*}
$$

Relation between classical Pochhammer symbol and two parameter Pochhammer symbol are given below [6].
Proposition 1. Let $x \in C \backslash k Z^{-}, k, p, r, s \in R^{+}-\{0\}$ and $\operatorname{Re}(x)>0, n \in N$, then the following identity holds,

$$
\begin{equation*}
{ }_{r} \Gamma_{s}(x)=\frac{k}{s}\left(\frac{r}{p}\right)^{\frac{x}{s}}{ }_{p} \Gamma_{k}\left(\frac{k x}{s}\right) \tag{14}
\end{equation*}
$$

and particular case,

$$
\begin{equation*}
{ }_{r} \Gamma_{k}(x)=\left(\frac{r}{p}\right)^{\frac{x}{k}}{ }_{p} \Gamma_{k}(x) \tag{15}
\end{equation*}
$$

Proposition 2. Let $x \in C \backslash k Z^{-}, k, p \in R^{+}-\{0\}$ and $\operatorname{Re}(x)>0, n, q \in N$, then the following identity holds,

$$
\begin{equation*}
(x)_{n q, k}=\left(\frac{p}{k}\right)^{n q}(x)_{n q, k} \tag{16}
\end{equation*}
$$

and particular case,

$$
\begin{equation*}
{ }_{p}(x)_{n q, k}=(p)^{n q}\left(\frac{x}{k}\right)_{n q} . \tag{17}
\end{equation*}
$$

Wright generalized hypergeometric function [10],

$$
\begin{gather*}
{ }_{p} \psi_{q}\left[\begin{array}{c}
\left(\alpha_{1}, A_{1}\right), \ldots,\left(\alpha_{p}, A_{p}\right) ; \\
\left(\beta_{1}, B_{1}\right), \ldots,\left(\beta_{q}, B_{q}\right) ;
\end{array}\right]=\sum_{n=0}^{\infty} \frac{\prod_{i=1}^{p} \Gamma\left(\alpha_{i}+A_{i} n\right) z^{n}}{\prod_{j=1}^{q} \Gamma\left(\beta_{i}+B_{i} n\right) n!} . \tag{18}\\
{ }_{p} \psi_{q}\left[\begin{array}{c}
\left(\alpha_{1}, A_{1}\right), \ldots,\left(\alpha_{p}, A_{p}\right) ; \\
\left(\beta_{1}, B_{1}\right), \ldots,\left(\beta_{q}, B_{q}\right) ;
\end{array}\right]=H_{p, q+1}^{1, p}\left[\begin{array}{c}
\left(1-\alpha_{1}, A_{1}\right), \ldots,\left(1-\alpha_{p}, A_{p}\right) ; \\
-z \mid \\
(0,1),\left(1-\beta_{1}, B_{1}\right), \ldots,\left(1-\beta_{q}, B_{q}\right) ;
\end{array}\right] . \tag{19}
\end{gather*}
$$

Where $H_{p, q}^{m, n}[$.$] denotes the Fox H-function.$
Euler Beta transform,[8],

$$
\begin{equation*}
B[f(z): a, b]=\int_{0}^{1} z^{a-1}(1-z)^{b-1} f(z) d z \tag{20}
\end{equation*}
$$

Laplace transform, ([9],equation3.1.1),

$$
\begin{equation*}
L[f(z): s]=\int_{0}^{\infty} e^{-s z} f(z) d z \tag{21}
\end{equation*}
$$

Mellin transform, ([9],equation 4.1.1),

$$
\begin{equation*}
M[f(z): s]=\int_{0}^{\infty} z^{s-1} f(z) d z=f^{*}(s), \operatorname{Re}(s)>0 \tag{22}
\end{equation*}
$$

then,

$$
\begin{equation*}
f(z)=M^{-1}\left[f^{*}(s): x\right]=\int f^{*}(s) x^{-s} d s \tag{23}
\end{equation*}
$$

2 Main Results

1. Mellin-Barnes integral representation of $\mathrm{p}-\mathrm{k}$ Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$.

Theorem 2.1 Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, a n d q \in(0,1) \cup N$, then the function ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ is represented by the Mellin-Barnes integral as,

$$
\begin{equation*}
{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)=\frac{k p^{-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\left(-z p^{q-\frac{\alpha}{k}}\right)^{-s} d s \tag{24}
\end{equation*}
$$

Where $|\arg z|<\pi$; the contour integration beginning at $-i \infty$ and ending at $+i \infty$, and indented to separate the poles of the integrand as $s=-$ nforeveryn $\in N_{0}$ (to the left) from those at $s=\frac{\frac{\gamma}{k}+n}{q}$ foreveryn $\in N_{0}$ (to the right).
Proof Consider the integral on right side of equation(2.1) and use the theorem of calculus of residues,

$$
A \equiv \frac{k p^{-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\left(-z p^{q-\frac{\alpha}{k}}\right)^{-s} d s
$$

$=2 \pi i$ [sum of the residues at the poles $s=0,-1,-2, \ldots]$

$$
A \equiv \frac{k p^{-\frac{\beta}{k}}}{\Gamma\left(\frac{\gamma}{k}\right)} \sum_{n=0}^{\infty} \operatorname{Re}_{s=-n} s\left[\frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\right]\left(-z p^{q-\frac{\alpha}{k}}\right)^{-s}
$$

$$
\begin{gathered}
\left.A \equiv \frac{k p^{-\frac{\beta}{k}}}{\Gamma\left(\frac{\gamma}{k}\right)} \sum_{n=0}^{\infty} \lim _{s \rightarrow-n} \frac{\pi(s+n)}{\sin \pi s} \frac{\Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma(1-s) \Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\right]\left(-z p^{q-\frac{\alpha}{k}}\right)^{-s} \\
k p^{-\frac{\beta}{k}} \sum_{n=0}^{\infty} \frac{\left(\frac{\gamma}{k}\right)_{q n}}{\Gamma\left(\left(\frac{\beta}{k}\right)+\left(\frac{\alpha n}{k}\right)\right.} \frac{\left(z p^{q-\frac{\alpha}{k}}\right)^{n}}{n!}
\end{gathered}
$$

using equations (1.14) and (1.17), we have,

$$
A \equiv_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)
$$

Hence.

Particular cases:

Lemma 2.1.1 Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{andq} q(0,1) \cup N$, and put $p=k$ in equation(2.1), we have,

$$
\begin{equation*}
{ }_{k} E_{k, \alpha, \beta}^{\gamma, q}(z)=\frac{k^{1-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right)}\left(-z k^{q-\frac{\alpha}{k}}\right)^{-s} d s \tag{25}
\end{equation*}
$$

Where $|\operatorname{argz}|<\pi$; the contour integration beginning at $-i \infty$ and ending at $+i \infty$, and indented to separate the poles of the integrand as $s=-n$ for every $n \in N_{0}$ (to the left) from those at $s=\frac{\frac{\gamma}{k}+n}{q}$ for every $n \in N_{0}$ (to the right).

Note: Result given by equation(2.2) is known result given by ([7], equation(25)).
Lemma 2.1.2 Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, a n d q \in(0,1) \cup N$, and put $p=k=1$ in equation(2.1), we have,

$$
\begin{equation*}
{ }_{1} E_{1, \alpha, \beta}^{\gamma, q}(z)=\frac{1}{2 \pi i \Gamma(\gamma)} \int_{L} \frac{\Gamma(s) \Gamma(\gamma-q s)}{\Gamma(\beta-\alpha s)}(-z)^{-s} d s \tag{26}
\end{equation*}
$$

Where $|\operatorname{argz}|<\pi$; the contour integration beginning at $-i \infty$ and ending at $+i \infty$, and indented to separate the poles of the integrand as $s=-n$ for every $n \in N_{0}$ (to the left) from those at $s=\frac{\gamma+n}{q}$ foreveryn $\in N_{0}$ (to the right).

Note: Result given by equation(2.3) is known result given by ([1,7], equation(4.1.1) and (26)).
Lemma 2.1.3 Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, a n d q \in(0,1) \cup N$, and put $p=k$ and $q=1$ in equation(2.1), we have,

$$
\begin{equation*}
{ }_{k} E_{k, \alpha, \beta}^{\gamma, 1}(z)=\frac{k^{1-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\left(-z k^{1-\frac{\alpha}{k}}\right)^{-s} d s \tag{27}
\end{equation*}
$$

Where $|\arg z|<\pi$; the contour integration beginning at $-i \infty$ and ending at $+i \infty$, and indented to separate the poles of the integrand as $s=-n$ for every $n \in N_{0}$ (to the left) from those at $s=\frac{\gamma}{k}+n$ foreveryn $\in N_{0}$ (to the right).

Note: Result given by equation(2.4) is known result given by ([7], equation(27)).

Relationship with Fox H-function

Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, a n d q \in(0,1) \cup N$, then the function ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ From equation(2.1), we have,

$$
\begin{aligned}
& { }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)=\frac{k p^{-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\left(\frac{\gamma}{k}\right)-q s\right)}{\Gamma\left(\left(\frac{\beta}{k}\right)-\left(\frac{\alpha s}{k}\right)\right.}\left(-z p^{q-\frac{\alpha}{k}}\right)^{-s} d s,
\end{aligned}
$$

Relationship with Wright hypergeometric function

Let $k, p \in R^{+}-\{0\} ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, a n d q \in(0,1) \cup N$. The equation (1.6) can be written as (using equation(1.18)),

$$
\left.{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)=\frac{k p^{-\frac{\beta}{k}}}{\Gamma\left(\frac{\gamma}{k}\right)_{1}} \psi_{1}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right) ; \tag{29}\\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right) ;
\end{array}\right] p^{q-\frac{\alpha}{k}}\right]
$$

3 Integral Transform of ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$.

In this section we evaluate Euler Beta Transform, Laplace Transform and Mellin Transform of p-k Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$.
Theorem 3.1 Let $k, p \in R^{+}-\{0\} ; a, b, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, then Euler Beta Transform of p-k Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ is given by,

$$
\int_{0}^{1} z^{a-1}(1-z)^{b-1}{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z=\frac{k p^{-\frac{\beta}{k}} \Gamma(b)}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{2}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right),(a, \sigma) \tag{30}\\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right),(a+b, \sigma) ;
\end{array}\right]
$$

Proof Consider the left side integral and using equation (3.1), we have,

$$
\begin{gathered}
A \equiv \int_{0}^{1} z^{a-1}(1-z)^{b-1}{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z \\
A \equiv \sum_{n=0}^{\infty} \frac{{ }_{p}(\gamma)_{n q, k} x^{n}}{\Gamma_{k}(n \alpha+\beta) n!} \int_{0}^{1} z^{\sigma n+a-1}(1-z)^{b-1} d z,
\end{gathered}
$$

using equation(1.5), we have,

$$
A \equiv \sum_{n=0}^{\infty} \frac{{ }_{p}(\gamma)_{n q, k} x^{n}}{\Gamma_{k}(n \alpha+\beta) n!} B(\sigma n+a, b)
$$

using equation (1.15),(1.16) and (1.18), we have,

$$
A \equiv \frac{k p^{-\frac{\beta}{k}} \Gamma(b)}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{2}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right),(a, \sigma) ; \\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right),(a+b, \sigma) ;
\end{array}\right]
$$

Hence.

Particular cases:

Lemma 3.1.1 Let $k, p \in R^{+}-\{0\} ; a, b, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k$, in equation (3.1), we have Euler Beta Transform of p-k Mittag-Leffler function is,

$$
\int_{0}^{1} z^{a-1}(1-z)^{b-1}{ }_{k} E_{k, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z=\frac{k^{1-\frac{\beta}{k}} \Gamma(b)}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{2}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right),(a, \sigma) ; \tag{31}\\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right),(a+b, \sigma) ;
\end{array}\right]
$$

Note: Equation (3.2) is known result given by ([7],equation (30)).
Lemma 3.1.2 Let $k, p \in R^{+}-\{0\} ; \quad a, b, \sigma \in C ; \quad \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k=1$, in equation (3.1), we have Euler Beta Transform of $\mathrm{p}-\mathrm{k}$ Mittag-Leffler function is,

$$
\int_{0}^{1} z^{a-1}(1-z)^{b-1}{ }_{1} E_{1, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z=\frac{\Gamma(b)}{\Gamma(\gamma)}{ }^{2} \psi_{2}\left[\begin{array}{r}
(\gamma, q),(a, \sigma) ; \tag{32}\\
x \\
(\beta, \alpha),(a+b, \sigma)
\end{array}\right]
$$

Note: Equation (3.3) is known result given by ([7],equation (31)).
Lemma 3.1.3 Let $k, p \in R^{+}-\{0\} ; a, b, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k$, and $q=1$ in equation (3.1), we have Euler Beta Transform of p -k Mittag-Leffler function is,

$$
\begin{align*}
& \int_{0}^{1} z^{a-1}(1-z)^{b-1}{ }_{k} E_{k, \alpha, \beta}^{\gamma, 1}\left(x z^{\sigma}\right) d z=\frac{k^{1-\frac{\beta}{k}} \Gamma(b)}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{2}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, 1\right),(a, \sigma) ; \\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right),(a+b, \sigma) ;
\end{array}\right] \tag{33}\\
& \text {.4) is known result given by ([7],equation (32)). }
\end{align*}
$$

Note: Equation (3.4) is known result given by ([7],equation (32)).
Theorem 3.2 The Laplace transform of p-k Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$,

$$
\int_{0}^{\infty} z^{a-1} e^{-z s}{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z=\frac{k p^{-\frac{\beta}{k}} s^{-a}}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{1}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right),(a, \sigma) ; \tag{34}\\
\frac{x p^{q-\frac{\alpha}{k}}}{s^{\sigma}} \\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right) ;
\end{array}\right]
$$

Where $k, p \in R^{+}-\{0\} ; a, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and $\left|\frac{x}{s^{\sigma}}\right|<1$.
Proof Consider the right side integral and using equation(1.6), we have

$$
\begin{gathered}
A \equiv \int_{0}^{\infty} z^{a-1} e^{-z s}{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z \\
A \equiv \sum_{n=0}^{\infty} \frac{{ }_{p}(\gamma)_{n q, k} \Gamma_{k}(n \alpha+\beta)}{} \frac{x^{n}}{n!} \int_{0}^{\infty} z^{n \sigma+a-1} e^{-z s} d z
\end{gathered}
$$

using definition of gamma function, we have

$$
A \equiv s^{-a} \quad \sum_{n=0}^{\infty} \frac{p_{p}(\gamma)_{n q, k}}{\Gamma_{k}(n \alpha+\beta) n!} \Gamma(\sigma n+a)\left(\frac{x}{s^{\sigma}}\right)^{n}
$$

using equation (1.15),(1.17), and (1.18), we have

Hence.

Particular cases:

Lemma 3.2.1 Let $k, p \in R^{+}-\{0\} ; a, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k$, in equation (3.5), we have Laplace Transform of $\mathrm{p}-\mathrm{k}$ Mittag-Leffler function is,

$$
\int_{0}^{\infty} z^{a-1} e^{-z s}{ }_{k} E_{k, \alpha, \beta}^{\gamma, \alpha}\left(z^{\sigma}\right) d z=\frac{s^{-a} k^{1-\frac{\beta}{k}}}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{1}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, q\right),(a, \sigma) ; \tag{35}\\
\frac{x}{s^{\sigma}} k^{q-\frac{\alpha}{k}} \\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right) ;
\end{array}\right]
$$

Note: Equation (3.6) is known result given by ([7],equation (34)).
Lemma 3.2.2 Let $k, p \in R^{+}-\{0\} ; \quad a, b, \sigma \in C ; \quad \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k=1$, in equation (3.5), we have Laplace Transform of $\mathrm{p}-\mathrm{k}$ Mittag-Leffler function is,

$$
\int_{0}^{\infty} z^{a-1} e^{-z s}{ }_{1} E_{1, \alpha, \beta}^{\gamma, q}\left(x z^{\sigma}\right) d z=\frac{s^{-a}}{\Gamma(\gamma)^{2}} \psi_{1}\left[\begin{array}{c}
(\gamma, q),(a, \sigma) ; \tag{36}\\
(\beta, \alpha) ;
\end{array}\right]
$$

Note: Equation (3.7) is known result given by ([7],equation (34)).
Lemma 3.2.3 Let $k, p \in R^{+}-\{0\} ; a, b, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(\sigma)>0$ and $q \in(0,1) \cup N$, and put $p=k$, and $q=1$ in equation (3.5), we have Laplace Transform of p -k Mittag-Leffler function is,

$$
\int_{0}^{\infty} z^{a-1} e^{-z s}{ }_{k} E_{k, \alpha, \beta}^{\gamma, 1}\left(x z^{\sigma}\right) d z=\frac{s^{-a} k^{1-\frac{\beta}{k}}}{\Gamma\left(\frac{\gamma}{k}\right)}{ }_{2} \psi_{1}\left[\begin{array}{c}
\left(\frac{\gamma}{k}, 1\right),(a, \sigma) ; \tag{37}\\
\frac{x}{s^{\sigma}} k^{1-\frac{\alpha}{k}} \\
\left(\frac{\beta}{k}, \frac{\alpha}{k}\right) ;
\end{array}\right]
$$

Note: Equation (3.8) is known result given by ([7],equation (35)).
Theorem 3.3 The Mellin transform of p-k Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$,

$$
\begin{equation*}
\int_{0}^{\infty} t^{s-1}{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(-w t) d z=\frac{\Gamma(s) \Gamma\left(\frac{\gamma}{k}-q s\right)}{\Gamma\left(\frac{\beta}{k}-\frac{\alpha s}{k}\right) \Gamma\left(\frac{\gamma}{k}\right)}\left(\frac{p^{\frac{\alpha}{k}-q}}{w}\right)^{s} \tag{38}
\end{equation*}
$$

Where $k, p \in R^{+}-\{0\} ; a, \sigma \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(s)>0$ and $q \in(0,1) \cup N$. Proof Put $\mathrm{z}=-\mathrm{wt}$ in equation (2.1), we have,

$$
\begin{gather*}
{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(-w t)=\frac{k p^{-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} \frac{\Gamma(s) \Gamma\left(\frac{\gamma}{k}-q s\right)}{\Gamma\left(\frac{\gamma}{k}\right) \Gamma\left(\frac{\beta}{k}-\frac{\alpha s}{k}\right)}\left(-w t p^{q-\frac{\alpha}{k}}\right)^{-s} d s \\
{ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(-w t)=\frac{k p^{-\frac{\beta}{k}}}{2 \pi i \Gamma\left(\frac{\gamma}{k}\right)} \int_{L} f^{*}(s)(t)^{-s} d s . \tag{39}
\end{gather*}
$$

where,

$$
f^{*}(s)=\frac{\Gamma(s) \Gamma\left(\frac{\gamma}{k}-q s\right)}{\Gamma\left(\frac{\gamma}{k}\right) \Gamma\left(\frac{\beta}{k}-\frac{\alpha s}{k}\right)}\left(-w t p^{q-\frac{\alpha}{k}}\right)^{-s}
$$

using equation (1.22),(1.23) and (3.10), which immediately leads to (3.9).

Particular cases:

Lemma 3.3.1 Let $k, p \in R^{+}-\{0\} ; \alpha, \beta, \gamma, s \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(s)>0$ and $q \in(0,1) \cup N$. put $p=k$, Then Millin transform of generalized Mittag-Leffler function, ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ is,

$$
\begin{equation*}
\int_{0}^{\infty} t^{s-1}{ }_{k} E_{k, \alpha, \beta}^{\gamma, q}(-w t) d z=\frac{\Gamma(s) \Gamma\left(\frac{\gamma}{k}-q s\right)}{\Gamma\left(\frac{\beta}{k}-\frac{\alpha s}{k}\right)}\left(\frac{k^{\frac{\alpha}{k}-q}}{w}\right)^{s} . \tag{40}
\end{equation*}
$$

Note: equation (3.11) is known result given by ([7],equation(36)).
Lemma 3.3.2 Let $k, p \in R^{+}-\{0\} ; \quad \alpha, \beta, \gamma, s \in C ; \quad \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(s)>0 \quad$ and $q \in(0,1) \cup N$. put $p=k=1$, Then Millin transform of generalized Mittag-Leffler function ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ is,

$$
\begin{equation*}
\int_{0}^{\infty} t^{s-1}{ }_{1} E_{1, \alpha, \beta}^{\gamma, q}(-w t) d z=\frac{\Gamma(s) \Gamma(\gamma-q s)}{\Gamma(\beta-\alpha s) \Gamma(\gamma)}\left(\frac{1}{w}\right)^{s} . \tag{41}
\end{equation*}
$$

Note: equation (3.12) is known result given by ([7],equation(38)).
Lemma 3.3.3 Let $k, p \in R^{+}-\{0\} ; \alpha, \beta, \gamma, s \in C ; \operatorname{Re}(\alpha)>0, \operatorname{Re}(\beta)>0, \operatorname{Re}(\gamma)>0, \operatorname{Re}(s)>0$ and $q \in(0,1) \cup N$. put $q=1$, Then Millin transform of generalized Mittag-Leffler function ${ }_{p} E_{k, \alpha, \beta}^{\gamma, q}(z)$ is,

$$
\begin{equation*}
\int_{0}^{\infty} t^{s-1}{ }_{k} E_{k, \alpha, \beta}^{\gamma, 1}(-w t) d z=\frac{\Gamma(s) \Gamma\left(\frac{\gamma}{k}-s\right)}{\Gamma\left(\frac{\beta}{k}-\frac{\alpha s}{k}\right) \Gamma\left(\frac{\gamma}{k}\right)}\left(\frac{k^{\frac{\alpha}{k}-1}}{w}\right)^{s} \tag{42}
\end{equation*}
$$

Note: equation (3.13) is known result given by ([7],equation(39)).

References

[1] A. K. Shukla and J.C. Prajapati. On the generalization of Mittag-Leffler function and its properties. Journal of Mathematical Analysis and Applications, 336 (2007) 797-811.
[2] A. Wiman. Uber den fundamental Satz in der Theories der Funktionen $E_{\alpha}(z)$, Acta Math. 29
(1905) 191-201.
[3] G.A. Dorrego and R.A. Cerutti. The K-Mittag-Leffler Function. Int. J.Contemp. Math. Sciences, Vol. 7 (2012) No. 15, 705-716.
[4] G. Mittag-Leffler. Sur la nouvellefonction $E_{\alpha}(z)$ C.RAcad. Sci. Paris 137(1903) 554-558.
[5] Kuldeep Singh Gehlot, The p-k Mittag-Leffler function, Palestine Journal of Mathematics 7(2),(2018)628-632.
[6] Kuldeep Singh Gehlot, Two Parameter Gamma Function and it's Properties, arXiv:1701.01052v1[math.CA] 3 Jan 2017.
[7] Kuldeep Singh Gehlot, Integral Transform of Generalized K-Mittag-Leffler Function,Int.Transactions in Mathematical Sciences and Computers,vol. 5, N0. 1, pp. 37-44,2012.
[8] H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions, John Wiley and Sons / Horword, New York/ Chichester, 1984.
[9] I.N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, New Delhi, 1979.
[10] Rafael Diaz and Eddy Pariguan. On hypergeometric functions and Pochhammer k-symbol. Divulgaciones Mathematicas, Vol. 15 No. 2 (2007) 179-192.
[11] Earl D. Rainville, Special Functions, The Macmillan Company,New York,1963.
[12] T. R. Prabhakar. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7-15.

